Геномные мутации синдром дауна

Лекция № 21. Изменчивость

Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают две основные формы изменчивости: наследственная и ненаследственная.

Наследственная, или генотипическая, изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала.

Ненаследственная, или фенотипическая, или модификационная, изменчивость — изменения признаков организма, не обусловленные изменением генотипа.

Мутации — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

Термин «мутация» введен в науку Де Фризом. Им же создана мутационная теория, основные положения которой не утратили своего значения по сей день.

  1. Мутации возникают внезапно, скачкообразно, без всяких переходов.
  2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.
  3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.
  4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  5. Одни и те же мутации могут возникать повторно.
  6. Мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенезом, а факторы среды, вызывающие появление мутаций, — мутагенами.

По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

По адаптивному значению выделяют: полезные, вредные (летальные, полулетальные) и нейтральные мутации. Полезные — повышают жизнеспособность, летальные — вызывают гибель, полулетальные — снижают жизнеспособность, нейтральные — не влияют на жизнеспособность особей. Следует отметить, что одна и та же мутация в одних условиях может быть полезной, а в других — вредной.

По характеру проявления мутации могут быть доминантными и рецессивными. Если доминантная мутация является вредной, то она может вызвать гибель ее обладателя на ранних этапах онтогенеза. Рецессивные мутации не проявляются у гетерозигот, поэтому длительное время сохраняются в популяции в «скрытом» состоянии и образуют резерв наследственной изменчивости. При изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование.

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно.

В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы. Благодаря генным мутациям возникают множественные аллели одного и того же гена.

Заболевания, причиной которых являются генные мутации, называются генными (фенилкетонурия, серповидноклеточная анемия, гемофилия и т.д.). Наследование генных болезней подчиняется законам Менделя.

Хромосомные мутации

Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — межхромосомные мутации (транслокация).

Делеция — утрата участка хромосомы (2); инверсия — поворот участка хромосомы на 180° (4, 5); дупликация — удвоение одного и того же участка хромосомы (3); инсерция — перестановка участка (6).

Хромосомные мутации: 1 — парахромосом; 2 — делеция; 3 — дупликация; 4, 5 — инверсия; 6 — инсерция.

Транслокация — перенос участка одной хромосомы или целой хромосомы на другую хромосому.

Заболевания, причиной которых являются хромосомные мутации, относятся к категории хромосомных болезней. К таким заболеваниям относятся синдром «крика кошки» (46, 5р — ), транслокационный вариант синдрома Дауна (46, 21 t21 21 ) и др.

Геномные мутации

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n), тетраплоиды (4n) и т.д.

Гетероплоидия (анеуплоидия) — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Наиболее вероятной причиной гетероплоидии является нерасхождение какой-либо пары гомологичных хромосом во время мейоза у кого-то из родителей. В этом случае одна из образовавшихся гамет содержит на одну хромосому меньше, а другая — на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида: нулесомия (2n — 2), моносомия (2n — 1), трисомия (2n + 1), тетрасомия (2n + 2) и т.д.

На генетических схемах, приведенных ниже, показано, что рождение ребенка с синдромом Клайнфельтера или синдромом Тернера-Шерешевского можно объяснить нерасхождением половых хромосом во время анафазы 1 мейоза у матери или у отца.

1) Нерасхождение половых хромосом во время мейоза у матери

2) Нерасхождение половых хромосом во время мейоза у отца

Заболевания, причиной которых являются геномные мутации, также относятся к категории хромосомных. Их наследование не подчиняется законам Менделя. Кроме вышеназванных синдромов Клайнфельтера или Тернера-Шерешевского, к таким болезням относятся синдромы Дауна (47, +21), Эдвардса (+18), Патау (47, +15).

Полиплодия характерна для растений. Получение полиплоидов широко используется в селекции растений.

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки — у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволил самому Н.И. Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

* Примечание. Знак «+» означает наличие наследственных форм, обладающих указанным признаком.

Открытый Н.И. Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев — у птиц, чешуи — у рыб, шерсти — у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет большое значение для селекции, поскольку позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза.

Искусственное получение мутаций

В природе постоянно идет спонтанный мутагенез, но спонтанные мутации — достаточно редкое явление, например, у дрозофилы мутация белых глаз образуется с частотой 1:100 000 гамет.

Факторы, воздействие которых на организм приводит к появлению мутаций, называются мутагенами. Обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Индуцированный мутагенез имеет большое значение, поскольку дает возможность создания ценного исходного материала для селекции, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет большую роль в формировании признаков организмов. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Примером изменчивости признаков под действием факторов внешней среды является разная форма листьев у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидную. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) появляется загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна.

Модификационная изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки); 3) соответствие изменений действию фактора среды; 4) зависимость пределов изменчивости от генотипа.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Это объясняется тем, что генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови). Знание нормы реакции имеет большое значение для практики сельского хозяйства.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n). Степень выраженности изучаемого признака у членов выборочной совокупности различна. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v. Частота встречаемости отдельных вариант обозначается буквой p. При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака.

Например, если взять 100 колосьев пшеницы (n = 100), подсчитать число колосков в колосе (v) и число колосьев с данным количеством колосков, то вариационный ряд будет выглядеть следующим образом.

licey.net

Список использованной литературы. 14

В современной медицине при изучении болезней человека важное значение имеют наследственные заболевания, связанные с нарушениями целостности генетической информации в геноме человека, вызванными различными факторами.

Геном — наследственный аппарат клетки, содержащий весь объём информации, необходимый для её существования в условиях среды и передачи наследственных признаков последующему поколению.

Геномика – наука, изучающая геном человека и геномы в целом.

Медицинская генетика – одно из направлений геномики человека, система знаний о роли генетических факторов в патологии человека и система методов диагностики, лечения и профилактики наследственной патологии в широком смысле.

Эта наука играет важную роль в профилактической медицине, позволяя посредством различных методов генной терапии предупредить рождение больного ребёнка в семье с наследственной патологией.

Генная терапия предполагает лечение самых разнообразных, а не только наследственных болезней с помощью введения больному генов, играющих ключевую роль в патогенезе соответствующих заболеваний.

Медицинская генетика имеет важное значение в профилактике и лечении любых заболеваний, связанных с какими либо генетическими нарушениями, не только наследственного характера.

1. Что такое геномные хромосомные мутации?

Материальной субстанцией наследственности являются молекулы ДНК и, в частности гены – транскрибируемые фрагменты ДНК, кодирующие белки и разнообразные молекулы РНК (рРНК, тРНК, регуляторные и другие РНК). Изменчивость определяется существованием различных состояний генов или аллелей. При этом нормальная изменчивость связана с присутствием у разных индивидуумов нормальных вариантов гена, а патологическая изменчивость – с наличием множества мутантных аллелей или мутаций. Носители хромосомных аномалий, доминантных мутаций или гомозиготы по рецессивным мутациям называются мутантными особями или мутантами. Мутации называются «легкими» или «тяжелыми», если они ассоциированы с мягким или тяжелым течением заболевания соответственно.

Мутации бывают геномными, хромосомными или генными. В общем случае, геномные и хромосомные мутации приводят к тяжелым патологическим состояниям, часто несовместимым с жизнью.

К геномным мутациям относятся увеличения полного набора хромосом – полиплоидии, или изменения количества хромосом одной пары – анеуплоидии. У человека описано два вида полиплоидий – триплоидии и тетраплоидии – трех- и четырехкратное увеличение числа гаплоидного набора. Подобные аномалии встречаются только у спонтанных абортусов или мертворожденных. [4 c.55]

Полиплоидия (эуплоидия) – геномная мутация, вызванная добавлением целого гаплоидного набора хромосом как в результате ошибок в процессе мейоза, так и при нарушении митоза.

Гаметы и соматические клетки с увеличенным набором хромосом, кратным их гаплоидному числу, называют полиплоидными. Приставки три-, тетра- и т. д. указывают, во сколько раз увеличено число хромосом, т. е. степень плоидности:3n-триплоид, 4n-тетраплоид, 5n-пентаплоид и т. д.

У растений полиплоидия встречается гораздо чаще, чем у животных. Относительная редкость полиплоидии у животных объясняется тем, что увеличение числа хромосом значительно повышает вероятность ошибок при образовании гамет в мейозе.

У человека описаны триплоидные и тетраплоидные организмы. Частота их возникновения низка. Они обнаруживаются среди спонтанно абортированных эмбрионов или плодов и у мертворожденных. Продолжительность жизни новорожденных с такими нарушениями — несколько дней.

Триплоидия может быть обусловлена нарушением мейотического расхождения всего набора хромосом в мейозе женских (отсутствие первого мейотического деления ооцита) или мужских половых клеток. В результате либо яйцеклетка, либо сперматозоид оказываются диплоидными. В качестве механизма триплоидии рассматривают также возможность оплодотворения яйцеклетки двумя сперматозоидами. В том случае, когда триплоидия обусловлена отцовским диплоидным набором хромосом, возникает пузырное перерождение плаценты, так называемый пузырный занос, препятствующий стабильному поступлению питательных веществ от матери к ребенку, а следовательно, его нормальному развитию.

Гораздо больший интерес у учёных-генетиков вызывают заболевания, причиной которых является анэуплоидия.

Анэуплоидия может выражаться в появлении в дочерних клетках добавочной хромосомы (n+1),(2n+1) или в нехватке какой-либо хромосомы (n-1),(2n-1) и т.д. Анэуплоидия может возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не разойдутся. В этом случае оба члена пары направляются к одному и тому же полюсу клетки, и тогда разделение гомологичных хромосом в анафазе II может привести к образованию гамет, содержащих на одну или несколько хромосом больше или меньше, чем в норме. Это явление известно под названием нерасхождения. Когда гамета с недостающей или лишней хромосомой сливается с нормальной гаплоидной гаметой, образуется зигота с нечетным числом хромосом: вместо каких-либо двух гомологов в такой зиготе их может быть три или только один.

Зигота, в которой число хромосом меньше диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Если это происходит у животных, то из таких зигот в большинстве случаев развиваются особи с резко выраженными аномалиями. У человека наиболее ярким примером нерасхождения хромосом является синдром Дауна, трисомия по 21-й паре хромосом.

Возможно также нерасхождение мужских и женских половых хромосом, которое приводит к анэуплоидии, влияющей на вторичные половые признаки и фертильность, а иногда и на умственные способности.

Хромосомные мутации, в свою очередь, могут быть числовыми (анеуплоидии) или структурными, то есть затрагивать число хромосом или их структуру. Наиболее частыми числовыми аномалиями являются моносомии – отсутствие одной из гомологичных хромосом и трисомии – существование добавочной третьей копии одной из гомологичных хромосом, причем эта добавочная хромосома может быть как материнского, так и отцовского происхождения. Трисомии найдены не для всех хромосом, и наиболее частыми из них являются синдромы Дауна, Эдвардса и Патау – трисомии по 21, 18 и 13 хромосомам соответственно. Иногда количество добавочных хромосом может быть еще больше, эти аномалии называются полисомиями. Моносомии и полисомии описаны, главным образом, для половых хромосом. Другие геномные мутации несовместимы с жизнью и приводят к ранней эмбриональной гибели.[4 c.56]

Синдром Шерешевского Тернера-заболевание ,вызванное моносомией по Х-хромосоме(45 хромосом = 44 аутосомы + ХО).

В период созревания гамет наблюдаются случаи нерасхождения половых хромосом (в I, II или обоих делениях созревания).

Гаметы несут не 22 аутосомы + 1половую хромосому (Х или У), а возникает нарушение парности хромосом. Моносомия Х зависит исключительно от отца.

Р ♀ 44 аутосомы + ХХ → ♂ 44 аутосомы + XY

Гаметы 22 аутосомы + Х 22 аутосомы + ХY

22 аутосомы + Х 22 аутосомы + 0

F144 аутосомы + Х0

Для женщин с синдромом Шерешевского-Тернера характерны маленький рост, короткая шея, воронкообразная грудина, бесплодие вследствие недоразвития яичников, слабое развитие половых признаков. 50% больных умственно отсталы или нормальны. Могут быть пороки развития внутренних органов. Дети с синдромом Шерешевского-Тернера рождаются с частотой 0,7 на 1000 новорожденных девочек.

Диагноз ставят при исследовании полового хроматина и на основании результатов цитогенетического анализа.

Аутосомные моносомии среди живорожденных очень редки. Это мозаичные организмы с нормальными клетками. Моносомия касается аутосом 21 и 22. Полные трисомии описаны по большому числу хромосом: 8, 9, 13, 14, 18, 21, 22 и Х. Число Х-хромосом у человека может доходить до 5 с сохранением жизнеспособности.

Изменение числа хромосом вызвано нарушением распределения их по дочерним клеткам во время 1-го или 2-го мейотического деления в гаметогенезе или при первых дроблениях оплодотворенной яйцеклетки.

— при расхождении во время анафазы редуплицированной хромосомы, в результате чего удвоенная хромосома попадает только в одну дочернюю клетку;

— при нарушении конъюгации гомологичных хромосом, что может нарушить правильность расхождения гомологов по дочерним клеткам;

— при отставании хромосом в анафазе при их расхождении в дочерние клетки, что может привести к утрате хромосомы.

При нарушении в двух и более последовательных делениях возникают тетрасомии и другие полисомии.

К полисомиям относятся синдром Клайнфельтера, синдром Тернера и трисомия по Х-хромосоме.

Женщины с кариотипом ХХХ встречаются с частотой 1-1,4 на 1000 родившихся девочек. Для больных с кариотипом ХХХ характерно наличие недоразвитых яичников, матки, бесплодие. Умственное развитие нормальное или в пределах нижней границы нормы. Около 30% женщин сохраняют способность иметь детей.

С увеличением числа Х-хромосом в кариотипе до 4, 5 и более клинические проявления синдрома увеличиваются. Больные не могут иметь детей, умственно более отсталы. При исследовании полового хроматина в ядрах клеток эпителия слизистой оболочки щеки обнаруживают 2 и более телец Барра. Впервые синдром трисомии по Х-хромосоме описал П.Джекобе в 1959 г.

1 Х-хромосома: нормальный мужчина XY или больная женщина ХО (синдром Шерешевского-Тернера)

2 Х-хромосомы: нормальная женщина ХХ или больной мужчина XXY (синдром Клайнфельтера)

3 Х-хромосомы: больная женщина ХХХ или больной мужчина ХХХY (синдром Клайнфельтера)

4 Х-хромосомы: больная женщина(полисомия Х) или больной мужчина XXXY (синдром Клайнфельтера)

При синдроме Клайнфельтера, описанном им в 1942 г., у мужчин в ядрах клеток эпителия слизистой оболочки полости рта обнаружено тельце Барра. В кариотипе 47 хромосом (44+XXY). Частота больных с синдромом Клайнфельтера колеблется в пределах 2-2,5 на 1000 новорожденных мальчиков.

Для мужчин с синдромом Клайнфельтера характерен высокий рост, длинные конечности, евнухоидизм, нарушенный сперматогенез и бесплодие, гинекомастия, повышенное выделение женских гормонов, склонность к ожирению. Иногда наблюдается антисоциальное поведение и алкоголизм. Степень тяжести симптомов пропорциональна числу добавочных Х-хромосом.

Разновидностью синдрома Клайнфельтера является полисомия по хромосоме Y – синдром XYY (47 хромосом). У мужчин с хромосомным набором XYY рост выше среднего, умственное развитие ниже нормы. Они отличаются агрессивным поведением, наблюдается бесплодие. Среди новорожденных мальчики с данным синдромом рождаются с частотой 1:1000.

Индивиды с полисомией по Х- и Y-хромосомам(48-XXYY, 49-XXXYY) очень редки- 1:25000 новорожденных мальчиков. Они отличаются снижением интеллекта, агрессивностью поведения.

Полные трисомии описаны по большому числу аутосом: 8, 9, 13,14, 18, 21, 22.

Трисомия по хромосоме 8 приводит к живорождению, но часто наблюдается мозаицизм. Рождение детей с этим геномным нарушением происходит с частотой 1:50000 новорожденных. При синдроме отмечается неглубокая умственная отсталость и физическое недоразвитие. Типичны скелетные аномалии, удлиненное туловище, нарушения речи.

Трисомия по 9-й паре хромосом заканчивается внутриутробной гибелью носителя лишней хромосомы. Продолжительность жизни немногих рожденных детей с такой трисомией-9 составляла 3,5 месяца. Для них характерны внутриутробное недоразвитие, черепно-лицевые пороки, аномалии скелета, пороки сердца, почек и других органов.

Трисомия по 13-й паре хромосом (синдром Патау) — была описана в 1960 г. – встречается с частотой 1:5000-7000.

Для синдрома характерны пороки, лица, внутренних органов (сердца, почек, половых органов), полидактилия. Глухота наблюдается в 80-85% случаев. Имеет место ранняя смертность (в течение года 90% больных).

Трисомии по 14-й паре хромосом описаны для мертворожденных. У живорожденных этой патологии не выявлено.

Трисомии по 18-й паре (синдром Эдвардса) встречаются с частотой 1:7000 среди живых младенцев. Для детей характерно пренатальное недоразвитие, пороки костной системы, пороки сердца, отклонения в дерматоглифическом рисунке. 90% детей умирают на первом году жизни.

Наиболее часто встречается трисомия по 21-й паре хромосом (синдром Дауна). Клиническое описание этого синдрома было сделано в 1866 г. Английским врачом Дауном. Мальчики и девочки заболевают одинаково часто. Частота рождения детей с синдромом Дауна – 1:700-800 новорожденных. В большинстве случаев при трисомии в кариотипе 47 хромосом.

Больные с синдромом Дауна небольшого роста, слабоумны, имеют физические пороки. Для них характерны небольшая голова со скошенным затылком, косые глазные щели, эпикант, короткий нос с широкой переносицей, маленькие деформированные уши, полуоткрытый рот с высунутым языком и выступающей челюстью, походка с неловкими движениями, косноязычие. Они имеют пороки сердца, желудочно-кишечного тракта, почек. У больных часто возникают инфекционные и злокачественные заболевания, что обусловлено дефектами иммунной системы. Особенности дерматоглифики связаны с глубокой поперечной бороздой (обезьянья складка) и единственной сгибательной складкой на мизинцах. Благодаря улучшению условий жизни и медицинской помощи, больные с синдромом Дауна доживают до 30 лет и более. Некоторые больные могут заниматься посильной трудовой деятельностью.

Трисомия по 22-й паре, как правило, вызывает летальный эффект и гибель плода во внутриутробном периоде.

Такие генетические нарушения как эуплоидия и анэуплоидия относятся к числу геномных мутаций, т.е. мутаций, связанных с изменением первоначального числа хромосом в клетке.

Необходимо научиться предотвращать данные заболевания во избежание возникновения тяжелых обширных патологий в еще не сформировавшемся человеческом организме. Высокая смертность среди новорожденных с генетическими отклонениями, описанными в данной работе, связана с нарушением развития плода на ранних этапах жизни.

Очень часто большую роль в возникновении мутаций играет человеческий фактор, т.к. загрязнение окружающей среды, нездоровый образ жизни, вредные привычки, такие как курение и алкоголизм пагубно сказываются не только на здоровье человека, но и на здоровье его потомства.

Список использованной литературы

Гинтер Е.К. Медицинская генетика. М.: Медицина, 2008.

Грин Н., Стаут У., Тейлор Д. Биология т. 1-3. М.: Мир, 2009.

В.А. Шевченко, Н.А. Топорнина, Н.С. Стволинская Генетика человека. М.: Владос, 2007.

Горбунова В. Н. Медицинская генетика, 2009

Л.А. Рязанова, Учебное пособие, Практические занятия по основам генетики, 2014

www.scienceforum.ru

Геномные мутации синдром дауна

Природа хромосомных мутаций — это непосредственное воздействие на хромосомный материал ряда мутагенных факторов, таких как радиационное излучение, химические соединения, вирусы и другие повреждающие агенты (см. ниже). При действии этих мутагенов нарушается структура хромосом.

· К хромосомным мутациям (аберрациям хромосом) относятся:

· • частичные моносомии и трисомии, развившиеся в результате: потери —Делеция или удвоения — Дупликация части материала одной хромосомы;

· • сбалансированные изменения хромосомного материала, связанные с нарушением ориентации сегментов в отдельных хромосомах — инверсия;

· • перенос части материала с одной хромосомы на другую – межхромосомная перестройка или Транслокация. Иногда может наблюдаться объединение в транслокацию целых хромосом.

Среди хромосомных делеций выделяют Интерстициальные (внутри хромосомы с вовлечением центромеры) и Терминальные (концевые фрагменты хромосомы без вовлечения центромеры).

Причиной хромосомной мутации может стать сегрегация или накопление сбалансированных транслокаций хромосом в родословных родителей больного пробанда.

Таким образом, в большинстве случаев хромосомные мутации (как и геномные мутации – см. ниже) приводят к генному дисбалансу, и их фенотипический эффект зависит от степени этого дисбаланса.

Если аберрации хромосом сохраняются в ходе митоза и мейоза, то это Стабильные Мутации, а если они элиминируются из организма через апоптоз клетки (программированная гибель клеток), то это Нестабильные мутации.
Геномные мутации.

Природа геномных мутаций заключается в неправильном расхождении и распределении в митозе и мейозе четырех гомологичных хромосом какой-либо одной пары, образовавшихся в ходе репликации.

В результате геномной мутации может возникнуть Анеуплоидия, включая моносомию — утрата одной хромосомы (хромосомный набор: 2n-1), трисомию — избыток на одну хромосому (2n+1) и полисомию — избыток более чем на одну хромосому(2n+2, 2n+3 и т. д.).

Помимо полных моносомий и трисомий (изменение на одну целую хроомосому), выделяют частичные моносомии и трисомии (недостаток или избыток части хромосомы) – они будут рассмотрены в следующем разделе.

Таким образом, геномные мутации приводят к изменениям количества хромосомного материала. Поэтому их фенотипический эффект зависит от степени несбалансированности хромосомного материала или генного дисбаланса.

Вместе с тем возможны другие причины.

Например, в результате попадания в дочерние клетки не одной, а сразу двух гомологичных хромосом одного из родителей может возникнуть однородительская изодисомия либо по материнской, либо по отцовской хромосомам.

Возможно развитие полиплоидии, включая триплоидию (3n) в результате одновременного оплодотворения одной яйцеклетки двумя сперматозоидами (диспермия) и тетраплоидию (4n) в результате неразделения цитоплазмы материнской клетки при нормальном распределении гомологичных хромосом в дочерние клетки.

В случае полиплоидии различают аллополиплоидию, в результате объединения целых неродственных геномов (отцовского и материнского), и аутополиплоидию, для которой характерно увеличение числа наборов хромосом только одного генома, например, отцовского.

Геномные мутации могут обусловить развитие специфических, полуспецифических и неспецифических генетических эффектов.

Специфические эффекты связаны с изменениями содержания структурных генов, кодирующих продукцию специфических белков. Так, при трисомии по хромосоме 21 (синдром Дауна) в 1,5 раза повышена активность фермента — супероксиддисмутазы 1 (ген, котролирующий этот фермент находится на хромосоме 21). Данный фермент обусловливает развитие слабоумия.

Полуспецифические эффекты связаны с изменением содержания генов, контролирующих ключевые этапы клеточного метаболизма (гены рРНК и тРНК, гистоновых и рибосомных белков, сократительных белков и др.).

Неспецифические эффекты зависят от изменений в структуре гетерохроматина, который имеет важное значение для нормального формирования в онтогенезе полигенно наследуемых количественных признаков (длина и масса тела, продолжительность жизни, интеллектуальные способности и др.).

Хромосомные синдромы, обусловленные геномными и хромосомными мутациями не наследуются, так как в 90% случаев являются следствием новых мутаций в гаметах у родителей пробанда.

Исключение составляют транслокационные варианты синдромов, которые являются результатом наличия у родителей сбалансированных перестроек хромосом, не сопровождающихся потерей или избытком хромосомного материала. Коэффициент их наследуемости равен 100%.

Геномные мутации являются наиболее частыми из всех классов мутаций. Например, частота встречаемости синдром Дауна достигает 1 случая на 550-650 человек.

Именно частота синдрома Дауна служит показателем общей частоты хромосомных и геномных мутаций в популяции человека. Известно правило, согласно которому среди 100 больных с любыми хромосомными синдромами, 95 больных (95%) будут иметь числовые нарушения хромосом (включая 75% больных с синдромом Дауна) и только 5 больных (5%) — структурные нарушения хромосом.

В последние годы были выделены Динамические мутации. В их основе лежит экспансия или увеличение (экспансия) числа копий коротких повторяющихся последовательностей внутри кластера (пучок) нуклеотидов при передаче наследственной информации от родителей к потомкам.

Выделяют 2 класса экспансии ДНК: первый класс — резкое и стабильное увеличение числа копий определенных повторов (>10) на фоне полного отсутствия сокращения длин их кластеров; второй класс — меньшее число повторов (<4) также при стабильной длине их кластеров.

shporiforall.ru