Томат стресс

Томат стресс

  • Главная
  • Список секций
  • Биология
  • ИЗУЧЕНИЕ ПОСТСТРЕССОВОЙ РЕАКЦИИ ТОМАТОВ В УСЛОВИЯХ ВНЕСЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ

ИЗУЧЕНИЕ ПОСТСТРЕССОВОЙ РЕАКЦИИ ТОМАТОВ В УСЛОВИЯХ ВНЕСЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ

Автор работы награжден дипломом победителя II степени

Актуальность темы:Ответ растений на действие экстремальных факторов среды включает неспецифические реакции и процессы специализированной адаптации. Их биологическое значение заключается в срочной мобилизации защитных систем для сохранения жизнеспособности в неблагоприятных условиях и обеспечивает сохранение высокого уровня продуктивности растений в данных условиях. Важным свойством живых объектов является способность поддерживать гомеостаз — относительное постоянство внутренней среды при действии внешних факторов.

При действии на растение неблагоприятных факторов (стрессоров) возникает напряженное состояние, отклонение от нормы. Ответные реакции, индуцируемые в организме любыми внешними воздействиями, часто называют «адаптационным синдромом» или «стрессом» (от англ. stress — напряжение). В физиологии стресс — это комплекс неспецифических изменений, возникающих в организме в ответ на действие неблагоприятных факторов. При нормализации условий эти изменения могут полностью исчезнуть, если повреждение не было радикальным. Проведение исследований по оценке стрессовых реакций сельскохозяйственных растений важно с практической точки зрения. Подбор надежных методов обработки растений может обеспечить получение устойчивых урожаев, особенно в районах рискованного земледелия.

Особое место среди овощных культур отводится томату – растение, часто используемое на приусадебных участках, его плоды используются, как в свежем виде, так и в составе различных консервированных продуктов и салатов. Это теплолюбивое растение, которое плохо переносит повышенную влажность воздуха, но требует много воды для роста плодов. Посевы томата способны обеспечивать высокие урожаи плодов, особенно в условиях дополнительного орошения — до 100 т с 1 га [5].

При внесении органических и минеральных удобрений и поддержания грунта в рыхлом состоянии томат может расти на любых (кроме очень кислых) почвах. Однако посевные площади томата в России сравнительно не велики. Расширение посевов томата во многом сдерживается отсутствием современных высокоэффективных технологий ее возделывания и комплекса машин для механизации технологических операций.

Цель исследования: Выявить влияние внесения БАВ на рост и развитие томатов в условиях действия стресса.

Задачи исследования:

Выяснить роль биологически активных веществ (БАВ) в постстрессовой реакции томатов;

Проследить динамику ростовых процессов, при воздействии БАВ;

Выяснить действие такой обработки на урожай исследуемых растений, определить структуру урожая и продуктивность растений.

Объект исследования: Физиологические особенности Solanum lycopersicum (томатов).

Предмет исследования: Ростовые и продукционные процессы этих растений в зависимости от воздействия на семена температурного стресса и БАВ.

Гипотеза исследования: Воздействие на семена томатов повышенной температуры оказывает влияние на рост и развитие, развивающихся из них растений. В каких-то случаях это воздействие обнаруживается сразу — на этапах прорастания, а в каких-то — лишь на более поздних, например, в фазе плодоношения. Обработка семян БАВ может помочь растению в постстрессовой реакции и повлиять на урожайность культуры.

Практическая значимость: Разработаны предложения для получения максимальной урожайности плодов томата в открытом грунте с использованием БАВ, рассчитана экономическая эффективность применения биологических препаратов.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР ПО ИЗУЧАЕМОМУ ВОПРОСУ

1.1. Эколого-биологическая характеристика томата

Томат (Solánum lycopérsicum) — однолетнее или многолетнее травянистое растение сем. Паслёновые. Родина томата Южная Америка, где его выращивали туземцы задолго до открытия континента европейцами. В Европу это растение завезено в 16 веке испанскими и португальскими мореплавателями из Перу. Долгое время (до 18 в.) томат выращивали в садах в декоративных целях, ради его золотисто-оранжевых и ярко-красных плодов, считавшихся несъедобными. Им украшали клумбы, цветники, выращивали в горшках на окнах среди других комнатных растений.

В России помидоры появились в 18 в. сначала в южных районах: в Бессарабии, на юге Украины, в Крыму, Закавказье, Астраханской губернии. Одними из первых стран мира, начавших культивировать томат в качестве пищевого растения, были Россия и Украина. Долгое время считали, что помидоры можно выращивать только на юге. Постепенно помидоры стали распространяться в районы лесостепи и центральной нечерноземной полосы, где урожаи их в настоящее время почти такие же, какие получают на юге. Кроме того, в этих районах они более устойчивы к поражению растений болезнями.

Томат имеет развитую корневую систему стержневого типа. Корни растут быстро, уходят в землю на большую глубину (при безрассадной культуре до 1 м и более), распространяясь в диаметре на 1,5-2,5 м. При наличии влаги и питания дополнительные корни могут образовываться на любой части стебля, поэтому томат можно размножать не только семенами, но также черенками и боковыми побегами (пасынками). Стебель прямостоячий или полегающий, ветвящийся, высотой от 30 см до 2 м и более. Листья непарноперистые, рассеченные на крупные доли, иногда картофельного типа.

Цветки мелкие, невзрачные, желтые различных оттенков, собраны в кисть. Томат – факультативный самоопылитель: в одном цветке имеются мужские и женские органы. Плоды — сочные многогнёздные ягоды различной формы (от плоско-округлой до цилиндрической; могут быть мелкими (масса до 50 г), средними (51-100 г) и крупными (свыше 100 г, иногда до 800 г и более). Окраска плодов от бледно-розовой до ярко-красной и малиновой, от белой, светло-зелёной, светло-жёлтой до золотисто-жёлтой. Семена мелкие, плоские, заострённые у основания, светло- или тёмно-желтые, обычно опушённые, вследствие чего имеют серый оттенок [13].

Благодаря своим высоким вкусовым качествам томат культивируют почти повсюду, являясь излюбленным овощем многих народов. Плоды отличаются высокими питательными, вкусовыми и диетическими качествами. Калорийность спелых плодов (энергетическая ценность) — 19 ккал. Они содержат 4-8 % сухого вещества, в котором главное место занимают сахара (1,5-6 % от общей массы плодов), представленные в основном глюкозой и фруктозой, белки (0,6-1,1 %), органические кислоты (0,5%), клетчатка (0,84%), пектиновые вещества (до 0,3%), крахмал (0,07-0,3%), минеральные вещества (0,6%). В плодах томата высокое содержание каротиноидов (0,8-1,2 мг/100 г сырой массы), витаминов (В1, В2, В3, В5), фолиевой и аскорбиновой кислоты (15-45 мг/100 г сырой массы), органических, высокомолекулярных жирных и фенолкарбоновых кислот. В плодах найдены антоцианы, стеарины, тритерпеновые сапонины, абсцизировая кислота. Имеющийся в плодах холин понижает содержание холестерина в крови, предупреждает жировое перерождение печени, повышает иммунные свойства организма, способствует образованию гемоглобина.

Томат — тепло-светлолюбивая культура. Для нормального развития и роста необходима оптимальная температура 23-25 0 С. Если температура ниже 10 0 С, рост растения останавливается, при температуре ниже 15 0 С прекращается его цветение. Заморозки — главный враг томатов. При температуре выше +32 0 С пыльцевые зерна не прорастают и замедляется фотосинтез. Растения томата требуют высокой интенсивности света. Чем лучше освещение, тем скорее закладывается цветочная кисть и раньше наступает плодоношение.

Томат устойчив к засухе, но при этом резко уменьшает урожай и заболевает вершинной гнилью. Чтобы получить урожай 50 т/га, нужно около 5600 м 3 воды (обычно в наших условиях влаги меньше, т.е. нужны поливы). Оптимальная влажность почвы для томата в период вегетативного роста 60-70% ППВ, в период плодоношения — 75-80% ППВ. При влажности ниже 70% применяют орошение. Оптимальная относительная влажность воздуха составляет 45-60%. При более высокой (70%) ухудшается опыление цветков: только сухая пыльца может отделиться от тычинок и попасть на рыльце пестика. К сожалению, в открытом грунте нельзя уменьшать влажность воздуха, но можно это делать в теплице (Планк, 1992). Для выращивания подходят суглинистые или супесчаные почвы. Томат лучше других овощей переносит большую кислотность почвы (рН = 5,5-7). Вегетационный период у раннеспелых сортов составляет 90-110 дней, у среднеспелых — 111-120, у позднеспелых — более 120 дней. При этом благоприятные температурные условия для томатов в открытом грунте в средней полосе России составляют 2 — 2,5 месяца. Поэтому вегетационный период удлиняют искусственно, выращивая рассаду в теплицах или парниках [11].

1.2. Использование регуляторов роста при возделывании томатов

К числу перспективных агроприёмов, обеспечивающих повышение урожайности и качества томатов следует отнести метод предпосевной обработки семян регуляторами роста, которые участвуют в метаболических процессах растительного организма [14]

Исследованиями ученых Ульяновской ГСХА разработаны дополнительные экологически чистые, ресурсосберегающие технологические приемы увеличения урожайности томатов в условиях закрытого грунта. Полученные экспериментальные данные позволяют сделать вывод, что природные и синтетические регуляторы обладают физиологической активностью, ускоряют рост, развитие, способствуют формированию экологически чистой овощной продукции с хорошими биохимическими показателями. Применение регуляторов роста оказывает влияние на количество и массу плодов. В среднем за шесть сборов количество плодов на контроле составило 13,1 шт./раст, а на опытных вариантах от 16,7 до 20,8 шт., что составило 27,458,7%. Регуляторы роста способствуют формированию и более крупных плодов от 187,5 до 212,6г. Предпосевная обработка семян томата регуляторами роста повышает урожайность на 31,0-73,6%, что составляет 1,32 и 3,13 кг/м 2 . Для улучшения посевных качеств семян томатов, повышения урожайности и качества получаемой продукции в условиях защищенного грунта рекомендуется за 10-18 часов до посева проводить предпосевную обработку семян томатов рабочими растворами регуляторов роста: мелафен — 1-10″ 7%; экстрасол — 100 мл/л; янтарная кислота — 0,002 г/л; крезацин — 1 г/л; крезации (1 г/л) + янтарная кислота (0,002 г/л).

Исследованиями Дагестанской ГСХА установлено, что регуляторы роста улучшают посевные качества семян томатов, повышают энергию прорастания на 3,0-4,0%, снижают межфазные периоды на 5-8 дней, ускоряют созревание плодов и влияют на репродуктивный потенциал растений. Препараты Эпин Экстра и Иммуноцитофит повышают сырую массу растений томата у сорта Талалихин 186 на 9-15%, Волгоградского скороспелого 323 – на 7,0-13,9%. Изучаемые препараты повышают устойчивость растений томата к черной ножке: у сорта Утро этот показатель достигает 100% при обработке Цирконом, у сорта Талалихин 186 устойчивость повышается после обработки Иммуноцитофитом и Эпином Экстра в 1,5 раза, у сорта Волгоградский скороспелый 323 в 2,5 раза и у сортов Аран 735 и Утро в 2, 4 раза.

Регуляторы роста вызывают положительные сдвиги в обменных процессах прорастающего семени и развивающегося из них растения, особенно в условиях закрытого грунта [7],[12],[2],[4],[1],[3].

1.3. Методы обработки растений регуляторами роста

Существуют различные способы обработки растений [19].

Опрыскивание: Этот метод самый распространенный, производится при помощи пульверизаторов с резиновой грушей, ручных, ранцевых, тракторных и авиационных опрыскивателей.

Обработка порошком: Применяется для обработки клубней, семян, луковиц, черенков и целых растений.

Кратковременное погружение: В растворы регуляторов роста погружают семена, клубни, луковицы.

Нанесение капель: Способ применяется в опытных целях. Регулятор роста наносят пипеткой на верхушечные почки или листья.

Нанесение ланолиновой пасты: Паста наносится на верхушки растений, основания почек и молодых побегов, отдельные участки стеблей.

Инъекция. При изучении действия более глубокого введения регулятора роста его вводят при помощи медицинского шприца в ту или иную часть растения.

1.4. Стресс у растений

Стресс у растений – это комплексная защитная реакция, включающая как неспецифические (общие для разных типов стрессоров), так и специфические компоненты [21].

Понятие «стресс» введено в науку Гансом Селье, который называл это явление также «общим адаптационным синдромом». Под стрессом обычно понимают стереотипный (примерно одинаковый у разных особей) ответ организма на разные воздействия, сопровождающийся перестройкой его защитных сил. Считается, что главная роль стресса – мобилизация сил организма в критической ситуации.

В невысоких дозах повторяющиеся стрессы способствуют закаливанию организма, причем, во многих случаях показано, что закаливание по отношению к одному стрессовому фактору способствует повышению устойчивости организма и к некоторым другим стрессорам.

Поскольку при стрессе изменяется фитогормональный статус растений, возникла идея об искусственном, экзогенном внесении фитогормонов и биологически активных веществ (БАВ) для восстановления исходных оптимальных показателей. Довольно часто в системе наблюдалось восстановление баланса и отмечалось снижение негативного эффекта от действия стресса. Однако положительный эффект обнаруживался не всегда, одной из причин этого называлась недостаточная изученность реагентов – фитогормонов и БАВ. В настоящее время создана классификация регуляторов роста и изучаются тонкие механизмы их действия на растения [15].

1.5. Реакция растений на изменение температуры

Диапазон температур, действующих в природе на растения, достаточно широк: от -77ºС до + 55°С, т.е. составляет 132°С. Для каждого вида имеется интервал температур, когда интенсивность физиологических процессов максимальна. Из культурных растений жароустойчивостью обладают растения южных широт — сорго, рис, хлопчатник, клещевина. Большинство растений повреждается при температуре 35-40 °С [10].

Повышенная температура влияет на скорость диффузии и, как следствие, на скорость химических реакций (прямое влияние), вызывает изменение структуры белковых макромолекул, приводит к изменению активности ферментов, увеличению проницаемости мембран, нарушению гомеостаза, изменению взаимодействия между нуклеиновыми кислотами и белками, гормонами и рецепторами, происходит денатурация белков и нарушения структуры мембран, увеличивается интенсивность транспирации, что сопровождается возникновением у растения водного дефицита [18]. Высокая температура нарушает опыление и оплодотворение, приводит к недоразвитию семян, вызывают стерильность цветков и опадание завязей в период цветения [6].

Причины повреждения и гибели растений под действием пониженных температур: увеличение проницаемости мембран, разобщение окислительного фосфорилирования и дыхания, фотосинтетического фосфорилирования и темновой фазы фотосинтеза, нарушение белкового синтеза и накопление токсичных веществ. Низкие температуры (+4°С) вызывают у теплолюбивых растений (огурцы, томаты) уменьшение интенсивности дыхания, нарушается согласованность в работе ферментов, катализирующих ход различных реакций, следствием чего является резкое увеличение количества эндогенных токсинов (ацетальдегид, этанол и др.). При длительном действии пониженных температур увеличивается продолжительность всех фаз митотического цикла и снижается скорость роста клеток в фазе растяжения [17], [9].

Глава 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ

2.1. Характеристика биологических препаратов используемых в опыте

Агрика — препарат для повышения продуктивности растений. Применяется для обработки почвы, опрыскивания растений и обработки семян всех сельскохозяйственных культур, в любых климатических условиях как отдельно, так и с любыми минеральными подкормками, стимуляторами, фунгицидами, гербицидами, инсектицидами и биопрепаратами. Безвреден для человека и теплокровных животных, не загрязняет окружающую среду.

Действие препарата Агрика сводится к активизации процессов метаболизма растений за счет его способности синтезировать гормоны роста, витамины. Поселяясь на корнях растений и питаясь продуктами их выделений, полезные бактерии проникают в сами корни и передвигаются по сосудистой системе растения, обеспечивая ему защиту от бактерий-вредителей. Агрика повышает иммунитет растений, защищает их от стрессов, таких как засуха или чрезмерная влажность. Агрика улучшает развитие корневых волосков и усиливает поглотительную активность корней. Механизм действия при проведении обработок посевного материала сводится к тому, что при инокуляции происходит искусственное заселение поверхности семян полезной микрофлорой. При посеве, бактерии начинают интенсивно размножаться и активно колонизируют ризосферу развивающегося растения.

По имеющимся сведениям обработка препаратом Агрика дает прибавку до 2.5-5,5 ц зерна с 1 га, заболеваемость растений снижается в 2-5 раз. Для предпосевной обработки семян сои 1 литр препарата разводят в 8-10 литрах воды и расходуют на тонну посевного материала, обработку можно проводить за 1-14 дней посева.

Мизорин – препарат на основе ассоциативных азотфиксаторов для повышения урожайности и улучшения качества продукции сельскохозяйственных культур. Препарат повышает устойчивость к засухе, заморозкам и другим, неблагоприятным для растений условиям. Улучшает всхожесть семян, стимулирует рост и развитие растений. Мизорин обладает широким спектром воздействия на фитопатогенные микроорганизмы, подавляя развитие корневых гнилей в 2-5 раз, плодовых гнилей — 1,5-4 раза, фитофтороза — в 2-4 раза; ограничивает поступление и накопление в растениях нитратов; повышает урожайность, улучшает качество продукции. Гектарная норма препарата по действию заменяет 40-60 кг/га минеральных удобрений. Повышает содержание крахмала в картофеле на 0,8-2,5%, урожайность на 40-60 ц/га, проса на 3-4 ц/га [23].

Агрофил – бактериальный препарат, рекомендуемый при выращивании капусты, огурцов, томатов, перца, салата, моркови, тыквы, лука, плодово-ягодных растений. Это чистая культура бактерий рода агробактериум, поддерживаемых в активном состоянии на специально приготовленном торфяном материале-носителе. В 1 грамме Агрофила содержится не менее 10 миллиардов клеток бактерий. Агробактерии вырабатывают антибиотики, подавляющие развитие фитопатогенных грибов и бактерий. Агробактерии, способны растворять труднодоступные для растений минеральные соединения почвы, выделять ростостимулирующие вещества (природные аналоги ауксинов и гетероауксинов) и витамины, ускоряя созревание урожая. Агрофил обладает свойством превращать недоступный фосфор почвы (до 30%) в легко усвояемые соединения. Он улучшает всхожесть семян, стимулирует рост и развитие овощных культур, повышает устойчивость растений к болезням, улучшает минеральное и водное питание растений, ускоряет выход ранней продукции. Применение Агрофила увеличивает содержание витаминов, каротина в продукции на 10-30%, ускоряет созревание на 7-10 дней, снижает содержание нитратов, радиоактивных веществ и тяжёлых металлов. Обработку семян следует проводить в день посева, а ещё лучше – непосредственно перед посевом, так как клубеньковые бактерии, нанесённые на поверхность семян, быстро гибнут – уже через 5-6 часов после обработки их количество уменьшается вдвое [22].

Характеристика метеорологических условий

Из абиотических факторов существенное влияние на рост и развитие томатов, формирование урожая оказывали погодные условия.

Анализ агроклиматических факторов, что за период январь – апрель выпало 113,6 мм атмосферной влаги, что на 20,6 мм больше среднемноголетнего значения. В пределах нормы выпали дожди в первой декаде мая. Однако вторая и третья декады месяца были засушливыми с суммой осадков 7,4 мм, при норме 22 мм. В целом дефицит атмосферной влаги в мае составил 37,3 %, при температуре воздуха на 31,4% выше нормы.

Развитие опытных растений в июне проходило при повышенных температурах и не равномерном выпадении осадков. В первой декаде, когда растения находились, в фазе бутонизации дожди полностью отсутствовали, а среднесуточная температура воздуха была на 4,5 0 С больше обычного. Практически отсутствовали осадки и в третей декаде июня. Но во второй декаде их выпало в 3,2 раза больше нормы. Период цветения и образования плодов в июле проходил также при дефиците атмосферной влаги, причем

количество выпавших осадков равнялось, только 5,4 мм при среднегодовом значении 47 мм. Ход среднесуточных температур был близок к норме и составил 20,3 0 С. Вегетация растений в августе продолжалась в условиях недостатка влаги, который составил 20 мм или 45,5%. При норме осадков 44 мм выпало только 24 мм.

В целом за вегетационный период (май-август) в зоне нахождения опытного участка выпало 94,3 мм осадков при норме 163 мм или 57,8 %. Дефицит увлажнения равнялся 68,7 мм или 42,2 %.

Материал и методы исследований

Для решения поставленных задач в 2015 году на семейном приусадебном участке, расположенном в селе Красный Яр в открытом грунте закладывался полевой опыт по изучению действия следующих биологических препаратов: Агрика; Мизорин и Агрофил на рост и развитие раннеспелого гибрида томата Семко-Синдбад F1.

Для этого гибрида характерно то, что его плодоношение начинается на 90-93-й день после появления всходов. Первое соцветие закладывается над 6-7 м листом, последующие – через 1-2 листа. В соцветии 6-8 плодов. Плоды округлые ярко-красной окраски, массой 90 г. Урожайность 9-10 кг/м 2 .

Схема опыта представлена в таблице 1. Она включала контрольный вариант, в котором рассада высевалась без обработки препаратами.

school-science.ru

Эффект препарата силк в условиях комплексного воздействия температурного и водного стрессов на растения томата Текст научной статьи по специальности «Биология»

Аннотация научной статьи по биологии, автор научной работы — Колмыкова Т. С., Лукаткин А. С., Духовскис П. , Куликова Н. Н.

Изучали влияние препарата силк тритерпеновой природы на морфофизиологические показатели у молодых растений томата сорта Волгоградский 5/95, выращенных в условиях водного и температурного стрессов . Установлено, что при предпосевной обработке семян оптимальная концентрация препарата 10-7 %. Изучаемый регулятор роста в фазу 5-го настоящего листа стимулировал прирост осевых вегетативных органов, площади листовой поверхности, стабилизировал состояние клеточных мембран, уменьшая их проницаемость. Показано, что действие препарата силк на растение более эффективно в условиях стрессовых (пониженной и повышенной) температур .

Похожие темы научных работ по биологии , автор научной работы — Колмыкова Т.С., Лукаткин А.С., Духовскис П., Куликова Н.Н.,

EFFECT OF SILK PREPARATION IN THE CONDITIONS OF COMPLEX ACTION OF TEMPERATURE AND WATER STRESS ON TOMATO PLANTS

The authors studied the effect of silk preparation of triterpene nature on morphophysiological parameters in young tomato plants of the Volgogradskii 5/95 variety, grown in the conditions of water and temperature stress. It was established, that optimal concentration for seed presowing treatment is 10-7 %. The studied growth regulator at the period of 5th leaf stimulates the gain of axial vegetative organs and the leaf area, stabilizes the state of cell membranes reducing their permeability. It was shown, that the action of silk preparation on the plants is more efficiently in the conditions of stress (low and high) temperatures.

Текст научной работы на тему «Эффект препарата силк в условиях комплексного воздействия температурного и водного стрессов на растения томата»

СЕЛЬСКОХОЗЯЙСТВЕННАЯ БИОЛОГИЯ, 2012, № 1

Регуляторы роста растений

ЭФФЕКТ ПРЕПАРАТА СИЛК В УСЛОВИЯХ КОМПЛЕКСНОГО ВОЗДЕЙСТВИЯ ТЕМПЕРАТУРНОГО И ВОДНОГО СТРЕССОВ НА РАСТЕНИЯ ТОМАТА*

Т.С. КОЛМЫКОВА1, А.С. ЛУКАТКИН1, П. ДУХОВСКИС2, Н.Н. КУЛИКОВА1

Изучали влияние препарата силк тритерпеновой природы на морфофизиологические показатели у молодых растений томата сорта Волгоградский 5/95, выращенных в условиях водного и температурного стрессов. Установлено, что при предпосевной обработке семян оптимальная концентрация препарата — 10-7 %. Изучаемый регулятор роста в фазу 5-го настоящего листа стимулировал прирост осевых вегетативных органов, площади листовой поверхности, стабилизировал состояние клеточных мембран, уменьшая их проницаемость. Показано, что действие препарата силк на растение более эффективно в условиях стрессовых (пониженной и повышенной) температур.

Ключевые слова: томат, стресс, засуха, температура, силк, регулятор роста.

Keywords: tomato, stress, drought, temperature, silk, growth regulator.

Повышение устойчивости сельскохозяйственных растений к неблагоприятным факторам окружающей среды — важнейшая проблема современного растениеводства. В этой связи большое значение приобретает использование фитогормонов и регуляторов роста с гормональным действием, выполняющих функции медиаторов в трансдукции внешних сигналов (1). Влияние неблагоприятных факторов на растение может быть ослаблено или полностью снято обработкой синтетическими биологически активными веществами (БАВ), которые оказывают стабилизирующее действие на клеточные мембраны, уменьшая их повреждение (2), либо восстанавливают активность метаболических процессов (3). В последние годы уделяется большое внимание разработке и применению регуляторов роста растений нового поколения, которые обладают не только ростстимулирующим, но и антистрессовым эффектом. В свете мировой тенденции к экологизации сельского хозяйства предпочтение отдается природным веществам, продуцируемым высшими растениями, грибами и микроорганизмами. Значительный интерес представляет отечественный препарат силк, полученный на основе тритерпеновых кислот эфирного экстракта пихты сибирской Abies sibirica Ldb. (4). Его использование при выращивании пшеницы сопровождалось не только повышением урожайности и качества зерна, но и увеличением водоудерживающей способности листьев (5, 6). На других культурах эффективность препарата силк неизвестна. Кроме того, до сих пор остается неизученным антистрессовое действие этого регулятора роста.

В естественных условиях основные внешние факторы, лимитирующие как распространение растений по земному шару, так и урожай сельскохозяйственных культур, — температура и почвенная гидратура (7, 8). Действие каждого из этих факторов на рост, развитие и продуктивность изучено достаточно подробно (9). Однако в природе растения зачастую подвергаются неблагоприятному действию комплекса экологических факторов, и в качестве лимитирующих не всегда выступает только один из них. Так, неблагоприятные температуры часто сопровождаются еще и

* Исследование выполнено при поддержке Федерального агентства по образованию (АВЦП «Развитие научного потенциала высшей школы», проект 2.1.1/624).

Целью настоящей работы было изучение физиологического действия препарата силк на рост и устойчивость молодых растений томата при комплексном действии стрессовых температур и засухи в вегетационном опыте.

Методика. Эксперименты выполняли на растениях томата (Ly-copersicon esculentum Mill.) среднепозднего сорта Волгоградский 5/95. Действующее вещество исследуемого биопрепарата силк (ЗАО «Элха-силк», г. Москва) — абиетиновая кислота (природный регулятор роста). Выравненные семена томата помещали в чашки Петри по 50 шт. и выдерживали 8 ч в растворах препарата силк (концентрация от 10-5 до 10-8 %), после чего промывали и проращивали в водопроводной воде. В качестве контроля использовали семена, замоченные в дистиллированной воде. На 5-е и 10-е сут подсчитывали число проросших семян. В эти же сроки у 20 проростков в каждом варианте измеряли длину побега и корня. Повторность опыта 5-кратная.

Пророщенные семена по 10 шт. высаживали в сосуды с почвой (среднесуглинистый выщелоченный чернозем, объем сосудов 2 л) в 3-кратной повторности. Растения выращивали до фазы 2-3 настоящих листьев (14-15-суточные проростки) при освещенности 10 клк, фотопериоде 14/10 ч (день/ночь); температуре 22-23 °С (день) и 15-16 °С (ночь). Далее опыт продолжали при разных вариантах водоснабжения и температуры: I — 70 % наименьшей влагоемкости (НВ), 22-23 °С днем и 15-16 °С ночью (оптимальные условия); II — 25 % НВ, 22-23 °С днем и 15-16 °С ночью (засуха); III — 25 % НВ, 38-39 °С днем и 15-16 °С ночью (повышенная температура в сочетании с засухой); IV — 25 % НВ, 2-3 °С в течение 6-7 ч ежедневно и в остальное время 15-16 °С (кратковременное охлаждение в сочетании с засухой). Засуху имитировали в течение 3 сут, температурные условия поддерживали на протяжении 7 сут. В фазу 5-го настоящего листа (возраст 22-24 сут) у растений определяли ростовые параметры: длину стебля и корня, площадь листовой поверхности растения (10). Для измерения длины главного корня растения предварительно извлекали из почвы, промывали и обсушивали.

Проницаемость мембран листьев (по выходу электролитов) определяли на кондуктометре 0К-102 с платиновым электродом («Radelkis», Венгрия). Для этого 3 г ткани листьев растений в каждом варианте разделяли на 6 усредненных навесок, тщательно промывали для удаления клеточного сока со срезов, обсушивали фильтровальной бумагой и заливали дистиллированной водой (100 мл). О выходе электролитов из ткани листьев в дистиллированную воду судили по изменению электропроводности вытяжки после инкубации в течение 4 ч. Полный выход электролитов оценивали после разрушения мембраны кипячением. Выход электролитов рассчитывали в процентах от полного выхода. Это служило мерой неспецифической проницаемости мембран (11).

Повторность опытов 3-кратная, в каждом опыте 5 биологических повторностей. В таблицах и на графиках приведены средние значения для каждого опыта со стандартными ошибками. Результаты обрабатывали статистически по стандартной методике с использованием комплексной программы Biostat.

Результаты. Для эффективного использования регулятора роста прежде всего необходимо определить его оптимальные концентрации для культуры. Результаты опыта показали, что препарат силк почти во всех исследованных концентрациях (10-5-10-8 %) значительно повышал

энергию прорастания и всхожесть семян томата по сравнению с контролем (или наблюдалась тенденция к повышению этих показателей) (табл. 1). Самые высокие значения энергии прорастания и всхожести регистрировали при концентрации 10-7 % (превышение контроля соответственно на 23 и 25 %). Силк почти во всех изученных концентрациях оказал положительное действие на рост осевых органов у проростков томата. Наибольшие показатели длины главного корня и побега также отмечали в варианте с концентрацией препарата 10-7 %. Изучаемый препарат сильнее стимулировал рост побега (см. табл. 1): увеличение длины корня относительно контроля составило в разных вариантах концентрации препарата от 2 до 21 %, удлинение побега — от 10 до 37 %. Таким образом, в дальнейших экспериментах мы использовали концентрацию 10-7 % как наиболее эффективную.

1. Показатели эффективности предпосевной обработки семян томата сорта Волгоградский 5/95 препаратом силк при оптимальных гидротермических условиях (М±т, вегетационный опыт)

Концентрация препарата, % Энергия прорастания семян на 5-е сут, % Всхожесть семян на 10-е сут, % Длина на 10-е сут, мм

побег проростка|корень проростка

Контроль (вода) 74,6±2,2 77,0±1,2 38,3±1,9 61,4±1,5

10-5 76,7±0,0 79,4±3,9 42,2±1,8 62,6±4,1

10-6 71,6±8,4 81,3±2,0 48,4±3,0 71,4±4,2

10-7 91,7±5,0 95,9±1,2 53,1 ±2,2. 74,6±3,5

10-8 75,0±1,7 77,7±1,0 45,9±3,9 67,9±2,2

2. Ростовые и физиологические показатели у растений томата сорта Волгоградский 5/95 в фазу 5-го настоящего листа под влиянием условий выращивания и предпосевной обработки препаратом силк (10-7 %) (М±т, вегетационный опыт)

Вариант опыта Длина, мм Соотношение побег/корень Площадь листовой поверхности, см2

Б е з о б р а б о т к и

I 110,0±5,6 54,7 ±7, 2,01 131,2±6,5

II 92,7±5,6 37,4±5,1 2,48 129,3±5,8

III 58,7±1,7 45,4±5,9 1,29 45,2±2,1

IV 92,0±4,8 36,9±3,6 2,49 66,5±3,2

О б р а б о т к а п р е п а р а т о м с и л к в к о н ц е н т р а ц и и 10-7 %

I 161,0±8,6 47,8±4,7 3,37 151,5±7,5

II 147,7±7,0 39,4±2,3 3,75 150,6±6,9

III 57,7±2,3 24,8±1,6 2,33 74,0±3,6

П р и м е ч а н и е. Условия выращивания по вариантам опыта см. в разделе «Методика».

Высота стебля Длина корня Площадь листовой

Рис. 1. Ростовые показатели у растений томата сорта Волгоградский 5/95 в фазу 5-го настоящего листа без обработки препаратом силк при разных условиях выращивания: а — оптимальные условия, б — засуха, в — гипертермия + засуха, г — гипотермия + засуха (вегетационный опыт).

При оценке влияния стрессовых факторов на морфофизиологические показатели в вариантах без обработки препаратом максимальную высоту надземной части проростков томата в фазу 5-го настоящего листа отмечали у растений, находящихся в оптимальных условиях (табл. 2). При действии засухи (как самостоятельного фактора, так и в сочетании с пониженной положительной температурой) длина стебля снижалась на 16 %; засуха в сочетании с высокой температурой угнетала рост стебля в еще большей степени — на 47 %

(рис. 1). Длина корня под влиянием засухи (как самостоятельно действующего стресса, так и в сочетании с пониженной температурой) уменьшалась на 32 %. В условиях гипертермии засуха угнетала развитие корня в меньшей степени — лишь на 17 % относительно показателя при оптимальных условиях (см. табл. 2). На фоне засухи высокая температура в большей степени замедляла развитие стебля, в то время как пониженная температура сильнее угнетала рост корней (см. рис. 1). Так как рост и развитие растений регулируются фитогормонами, то, возможно, содержание их активных форм неодинаково при воздействии разных температурных стрессоров. Предположительно это можно трактовать как тормозящее влияние гипертермии на процессы образования активных форм цитокини-нов, которые стимулируют рост побегов. Пониженная температура снижает активность эндогенных ауксинов, влияющих на рост корневой системы. Эффект засухи в отношении баланса ростстимулирующих фитогормонов, по-видимому, неспецифический (12).

В результате неодинакового влияния стрессовых факторов на рост осевых органов томата существенно изменялось соотношение длины побега и корня (см. табл. 2). При засухе в сочетании с нормальной или пониженной температурой это соотношение возрастало, указывая на перераспределение потока ассимилятов в надземную часть, на фоне повышенной температуры, напротив, значительно снижалось относительно контроля, свидетельствуя о большей направленности потоков питательных веществ в корень.

Водный стресс как самостоятельный фактор (на фоне оптимальной температуры) не оказал влияния на площадь листовой поверхности (см. табл. 2). В тех случаях, когда засуха сопровождалась пониженной и повышенной температурой, среднее значение площади ассимиляционной поверхности уменьшилось соответственно на 49 и 66 % относительно показателя при оптимальных условиях (см. рис. 1). Это можно объяснить не только угнетением процессов жизнедеятельности, но и развитием приспособительных реакций на фоне изменения гормонального статуса растений за 1 нед опыта. Уменьшение площади листовой поверхности влечет за собой снижение транспирации и тем самым уменьшает дефицит воды у растений (13).

Определение устойчивости растений к абиотическим стрессам на клеточном уровне по изменениям проницаемости мембран (по выходу электролитов) основано на том, что при действии неблагоприятных факторов нарушается структура и состояние клеточных мембран и ускоряется выход ионов из клеток в окружающую среду. Как оказалось, осмотический стресс (засуха) в условиях оптимальной температуры уменьшал выход электролитов (рис. 2), что указывает на увеличение стабильности клеточных мембран. Вероятно, причина заключается в том, что засуху имитировали в течение 3 сут и изучение реакции растения на водный стресс проводили в период его последействия. Такое кратковременное влияние осмотического стресса, возможно, активирует механизмы по-

Рис. 2. Проницаемость клеточных мембран у растений томата сорта Волгоградский 5/95 в фазу 5-го настоящего листа без обработки (а) и на фоне предпосевной обработки препаратом еилк (б) в зависимости от условий выращивания: I — оптимальные условия, II — засуха, III — гипертермия + засуха, IV — гипотермия + засуха (вегетационный опыт).

вышения резистентности клеточных мембран при акклимации (14). В нашем эксперименте на изменение проницаемости мембран оказал влияние температурный стресс на фоне засухи (см. рис. 2). И понижение, и повышение температуры сопровождалось увеличением выхода электролитов (и, следовательно, проницаемости мембран) на 17-23 % по сравнению с показателем в оптимальных условиях.

Исследуя морфофизиологические изменения у проростков томата при совместном действии стрессоров и препарата силк, эффективность регулятора оценивали на основании сравнения с показателями у растений, выращенных в аналогичных условиях, но без применения препарата (см. табл. 2). Предпосевная обработка семян раствором силка стимулировала прирост стебля по сравнению с необработанными растениями во всех вариантах, кроме сочетания высокой температуры с засухой. Более эффективным было использование препарата в условиях одного только водного стресса: высота побега увеличивалась на 59 % по сравнению с контролем. В оптимальных условиях, а также при пониженной температуре в сочетании с осмотическим стрессом прирост побега составил соответственно 46 и 23 %. Обнаружено, что препарат силк, действующее вещество которого представляет собой соединение тритерпеновой природы, не просто стимулировал рост стебля, но и приводил к его вытягиванию, причем как в оптимальных условиях произрастания, так и при водном стрессе.

У обработанных препаратом силк растений по сравнению с необработанными прирост корня (на 67 %) отмечали только при пониженной температуре. При повышенной температуре на фоне засухи и в оптимальных условиях выращивания длина главного корня была ниже, чем у необработанных растений в аналогичных вариантах соответственно на 13 и 45 %. В варианте засухи при оптимальных температурных условиях препарат не оказал действия на развитие корневой системы. В вариантах, где отмечали максимальное значение высоты стебля, был минимальный прирост корня, что, в свою очередь, привело к нарушению соотношения между длиной побега и корня.

При определении антистрессового характера действия препарата силк на растения важное значение имеют не только морфологические параметры, но и те показатели, на основе которых можно прогнозировать величину урожая. В нашем опыте предпосевная обработка семян томата изучаемым регулятором роста способствовала увеличению площади листовой поверхности по сравнению с контролем во всех представленных вариантах (см. табл. 2). Особенно значительный прирост площади ассимиляционного аппарата по сравнению с таковой у необработанных растений отмечали в вариантах с неблагоприятными температурными режимами. На фоне засухи при гипертермии увеличение листовой поверхности относительно контроля составило 63 %, при гипотермии — 96 % (см. табл. 2).

Таким образом, в условиях оптимальных температур (в том числе в сочетании с засухой) силк способствовал вытягиванию стебля; в то же время при неблагоприятных температурах (пониженной и повышенной) он усиливал развитие ассимиляционного аппарата, что в некоторой степени может указывать на термопротекторное действие этого регулятора.

Измерение выхода электролитов из высечек листьев томата показало, что предпосевная обработка семян препаратом силк существенно стабилизировала состояние клеточных мембран, уменьшая выход ионов относительно такового в вариантах с необработанными растениями независимо от условий выращивания (см. рис. 2). Самую высокую эффективность препарата силк на растениях томата отмечали в варианте с одновре-

менным действием повышенной температуры и засухи: выход электролитов уменьшался почти в 2,5 раза. В оптимальных условиях выращивания неспецифическая проницаемость мембран уменьшалась на 54 % по сравнению с контролем. В условиях только водного стресса влияние силка на проницаемость мембран не проявилось, поскольку засуха не оказала повреждающего действия на плазмалемму у не обработанных препаратом растений (см. рис. 2).

Таким образом, обработка семян томата препаратом силк значительно повышала стабильность клеточных мембран только в условиях неблагоприятных температур, что проявлялось в снижении экзосмоса электролитов, индуцированного стрессовым воздействием температуры и засухи.

Итак, препарат силк в изученном диапазоне концентраций (10-510-8 %) в большинстве случаев стимулировал прорастание семян томата сорта Волгоградский 5/95. Самые высокие значения всхожести отмечали при концентрации 10-7 %. Предпосевная обработка семян препаратом силк также усиливала процессы роста у растений томата. Однако характер морфологических изменений под влиянием этого препарата зависел от условий выращивания растений. В оптимальных условиях, а также при водном стрессе эффект силка проявлялся в вытягивании побегов и нарушении нормального соотношения длины побега и корня. При действии температурных стрессов препарат в значительной степени стимулировал развитие ассимиляционного аппарата. Кроме того, использованный регулятор роста тритерпеновой природы в большей степени стабилизировал клеточные мембраны в условиях температурного стресса. При совместном действии двух стресс-факторов — температуры и засухи отмечали главным образом термопротекторный эффект препарата силк.

Л И Т Е Р А Т У Р А

1. В е с е л о в Д.С., С а б и р ж а н о в а И.И., А х и я р о в а А.Г. Роль гормонов в

быстром ростовом ответе растений пшеницы на осмотический и холодовой шок. Физио-

логия растений, 2002, 49(4): 572-576.

2. Л у к а т к и н А.С., Б а ш м а к о в Д.И., К и п а й к и н а Н.В. Протекторная роль обработки тидиазуроном проростков огурца при действии тяжелых металлов и охлаждении. Физиология растений, 2003, 50(3): 346-348.

3. В о л ь н о в а Т.Л., К о р е н е в а Т.М., А с т а х о в а Н.В., М у р о м ц е в Г.С. Морозоустойчивость озимой пшеницы под влиянием биосинтетического регулятора роста фузикокцина. С.-х. биол., 1993, 5: 108-114.

4. Р а л д у г и н В.А., Д р а г у н о в А.Г., К л и м о в В.П., Ч е к у р о в В.М. Способ

получения биологически активной суммы тритерпеновых кислот. Пат. № 21088803 РФ.

Опубл. 1998, Б.И. № 11.

5. В л а с е н к о Н.Г., С а з а н о в и ч С.В., Е г о р ы ч е в а М.Т. Силк в посевах яровой пшеницы. Защита и карантин растений, 2004, 1: 23.

6. Д а в и д я н ц Э.С. Применение регуляторов роста тритерпеновой природы при выращивании озимой пшеницы. Агрохимия, 2006, 8: 30-33.

7. К у з н е ц о в Вл.В., Д м и т р и е в а Г.А. Физиология растений. М., 2006.

8. Л у к а т к и н А.С. Холодовое повреждение теплолюбивых растений и окислительный стресс. Саранск, 2002.

9. У с м а н о в И.Ю., Р а х м а н у л о в З.Ф., К у л а г и н а А.Ю. Экологическая физиология растений. М., 2001.

10. Л е в и н В.К., Л у к а т к и н А.С., Л е щ а н к и н а В.В. и др. Полевые методы исследования растений. Саранск, 2004.

11. З а у р а л о в О.А., Л у к а т к и н А.С. Кинетика экзосмоса электролитов у теплолюбивых растений при действии пониженных температур. Физиология растений, 1985, 32: 347-354.

12. К о л м ы к о в а Т.С., А п а р и н С.В., Д у х о в с к и с П.В. Действие экзогенных факторов на динамику ростстимулирующих фитогормонов культурных растений. Мат. V Межд. науч. конф. «Регуляция роста, развития и продуктивности растений». Минск, 2007: 165-166.

13. П у с т о в о й т о в а В.Н., Ж о л к е в и ч В.Н. Основные направления в изучении влияния засухи на физиологические процессы растений. Физиология и биохимия культурный растений, 1992, 24: 14-27.

14. Л у к а т к и н А.С., Г р и ш е н к о в а Н.Н., М а р т ы н о в а Н.П. К вопросу об акклимации проростков кукурузы к пониженной положительной температуре выращивания. С.-х. биол., 2006, 1: 86-91.

1ФГБОУ ВПО Мордовский государственный университет им. Н.П. Огарева,

430005 Республика Мордовия, г. Саранск, ул. Большевистская, 68 e-mail: [email protected], [email protected];

2Литовский институт садоводства и овощеводства,

LT 54333, Kauno 30, Babtai, Lithuania, e-mail: [email protected]

EFFECT OF SILK PREPARATION IN THE CONDITIONS OF COMPLEX ACTION OF TEMPERATURE AND WATER STRESS ON TOMATO PLANTS

T.S. Kolmykova1, A.S. Lukatkin1, P. Dukhovskis2, N.N. Kulikova1 S u m m a r y

The authors studied the effect of silk preparation of triterpene nature on morphophysi-ological parameters in young tomato plants of the Volgogradskii 5/95 variety, grown in the conditions of water and temperature stress. It was established, that optimal concentration for seed presowing treatment is 10-7 %. The studied growth regulator at the period of 5th leaf stimulates the gain of axial vegetative organs and the leaf area, stabilizes the state of cell membranes reducing their permeability. It was shown, that the action of silk preparation on the plants is more efficiently in the conditions of stress (low and high) temperatures.

ВСЕРОССИЙСКАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «XV ДОКУЧАЕВСКИЕ МОЛОДЕЖНЫЕ ЧТЕНИЯ: ПОЧВА КАК ПРИРОДНАЯ БИОГЕОМЕМБРАНА»

(1-3 марта 2012 года, г. Санкт-Петербург)

Организаторы: Санкт-Петербургский государственный университет, ГНУ Центральный музей почвоведения им. В.В. Докучаева Россельхозакадемии, Общество почвоведов им. В.В. Докучаева, Фонд сохранения и развития научного наследия В.В. Докучаева.

Конференция посвящена 150-летию со дня рождения Р.Ф. Ризположенского.

Основные тематические направления:

• Эксперименты в почвоведении

• Органоминеральныге взаимодействия в почвах

• Обменные процессы и поглотительная способность почв

• Особенности геохимического круговорота веществ в пахотный почвах

• Экологические функции естественный и антропогенно преобразованных почв

Контакты и информация: [email protected]

2-я ЕЖЕГОДНАЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ «ДОСТИЖЕНИЯ В ОБЛАСТИ БИОТЕХНОЛОГИИ — BIOTECH 2012»

(12-13 марта 2012 года, г. Бангкок, Таиланд)

Организатор: Global Sci. & Technology Forum (GSTF).

Тематика конференции охватывает области прикладной биологии, подразумевающие использование широкого спектра процедур для изменения живыгх организмов и биопроцессов с целью их использования в технике, технологии, медицине, сельском хозяйстве (в том числе выращивание одомашненный животныгх, растений, их улучшение через селекционные программы на основе искусственного отбора и гибридизации). Этот многопрофильный форум предоставляет широкие возможности для исследователей и практиков поделиться оригинальными результатами исследований и практическим опыгтом, очертить круг проблем и вопросов развития отрасли.

cyberleninka.ru